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Research Goals
1. Assess and characterize seabed variability {in 4 dimensions; 

2-3 specific environments}
• How do critical seabed parameters vary in space/time?
• What are the critical measurement/prediction scales?
• How are variability/uncertainty best “captured”

2.   Determine impact of the seabed variability on acoustic 
prediction uncertainty

• What are the critical seabed parameters  (prop/reverb/SE)?
• How is prediction uncertainty best “captured”?
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Outline 

1. Overview/programmatics

2. Progress
• G&G modeling → geoacoustics
• Measurements of G&G&geoacoustics 
• Local acoustic measurements → geoacoustics
• Geoacoustic uncertainty → prop uncertainty
• Geoacoustic uncertainty → reverb uncertainty
• Geoacoustic uncertainty → multistatic uncertainty

3. Statistical models/data available for DRI teams
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Seabed Variability Team Approach
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Study Areas
Italian littoralNew Jersey littoral

60-150m 70-150m

Data:
G&G&G
Reflection
Scattering
Amb. Noise
Propagation
Reverberation
Oceanography
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DRI Inter-Team Interaction
Collaborative Ideas

What can Seabed team contribute to other teams?
1. Set of canonical seafloor geoacoustic models for sensitivity 

analyses in end-to-end system studies.

2. Site specific seabed models to aid modeling; e.g.,  statistical 
bathymetric description of the Primer area drawing on 
similarities with STRATAFORM site.

3. Estimates of uncertainties inherent in propagation and 
reverberation predictions based on uncertainties/variability of 
seabed geoacoustics

4. Guidance on questions/issues related to seafloor variability
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Geoacoustic Extrapolation
Best geoacoustic data sets and best oceanographic data sets 
generally are not co-located

Seabed team has been asked to provide geoacoustic data 
extrapolations from NJ to Primer, ECS.

Team has discussed/argued how to proceed
Paradigm 1) provide data/statistical model for Region X:  “apply at Region 

Y at your own risk.”
Paradigm 2) conduct a detailed G&G&G study of Region Y, and 

develop/adapt model based on best available knowledge

Paradigm 1.5) short G&G&G study based on collective group knowledge, 
provide (modified) model with recommendations, constraints
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External DRI Interaction

1. GeoClutter-STRATAFORM Program
• Tools + data on NJ shelf

2. Boundary Characterization Program
• Tools + data in NJ shelf/ Straits of Sicily/ 

North Elba

3. SWAT Program
• Collaboration on geoacoustics of NJ shelf

4. SACLANT Centre 
• Acoustic modeling (prop/reverb/multi-static)
• data in Straits of Sicily/ North Elba



Holland et al. June 2002

Seabed Variability Team Approach
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SEDFLUX inputs 
NJ littoral

A = drainage basin area 35 410 km2

H = maximum elevation 1903 m

discharge & sediment load estimates 
influenced by A, H 

Paleo-seafloor 
model (John Goff)

kT
ices eQQHQ 55.02

3
4 )(103.1 +×= −
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B
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Influence of glacial conditions 30-10 yrs BP

A Drainage area factor 3 larger

Large contribution of ice melt
in pulses

B
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SEDFLUX-results

Output resolution: vertical 0.1 m, horizontal 50 m, ~300 km profile

Grainsize, permeability, bulk density, porosity 

Output files for gridcell 2400 – 4400 120 -240 km , shallow offshore shelf zone
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- SEDFLUX processes 4 runs: avulsion, 
diffusion, bedload dumping, floodplain 
sedimentation

- Slope geometry 4 runs: geometries based on 
profiles from pseudo-horizon

- Discharge and sediment load 3 runs with 
variation in input sediment 

- coarser sediment input
- coarse fraction only in melting stage of glacial 
higher

- Extreme events (glacial lake outbursts)
4 runs with different bed-load input/ floodplain 
sedimentation

Sensitivity experiments
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SEDFLUX → Geoacoustics

Fluctuations in the Laurentide
ice-sheet melting responsible for 
fine-scale structure 
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Seabed Variability Team Approach
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Bathymetric Uncertainty
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Statistical Modeling for NJ Sand Ridges
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In-situ Vp α measurements: NJ shelf

Hypothesis:

95 kHz backscatter 
correlated with 
geoacoustic (esp Vp)
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Correlation Analysis Results
No strong correlation yet observed between Vp - 95 kHz backscatter

– backscatter correlated with coarse fraction
– Vp correlated with fine fraction and mean grain size.

Thus, the data samples provide the only measure of spatial 
variability for surficial Vp, α.

•• Sound speed: 200 Sound speed: 200 -- 300 m/sec300 m/sec
Attenuation: ~ 1 dB/m/kHz* Attenuation: ~ 1 dB/m/kHz* 

•• Sound speed: 100 m/secSound speed: 100 m/sec
Attenuation: ~0.4 dB/m/kHz*Attenuation: ~0.4 dB/m/kHz*

•• Sound speed: ~5 m/secSound speed: ~5 m/sec
Attenuation: ~0.05 dB/m/kHz*Attenuation: ~0.05 dB/m/kHz*

10 km10 km

< 1 km< 1 km

< 1 m< 1 m

(except where cobbles (except where cobbles 
shells are in path)shells are in path)

Scale

* At 65 kHz
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• A semi-variogram for Vp was constructed from the sample data 
(excluding Hudson Apron).  

• Model allows generating realizations of velocity variability. 

(λo = 12.6 km)

Velocity Semi-Variogram Realization of Statistical 
Velocity Model



Holland et al. June 2002

Coupled acoustic measurements

10 ELEMENT
      HLA

UNIBOOM

x reflection (200-8000 Hz) and 
scattering (400-3600 Hz) sites

New Jersey shelf

Deterministic Geoacoustics
Sound speed, density, 

attenuation, gradients ,layers

Stochastic Geoacoustics:
roughness, volume, basement 
parameters

Reflection

Scattering
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Raw Time series data; Site 2
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NJ Sediment Velocity

Interim estimates of velocity 
uncertainty

~ ± 4 m/s surficial layer
~ ± 15 m/s sub-bottom

NJ observed min/max Vp (4 sites) is 89% Hamilton
NE observed min/max Vp (5 sites) is 65% Hamilton
MP observed min/max Vp (8 sites) is 95% Hamilton

Area VariabilitySite to Site Variability
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Scattering Strength Variability

Large variability in 
scattering strength within 
a shallow water area

• intrinsic
• geometric

Site-to-site variability in 
frequency dependence

Significant variability in 
angular dependence; low 
angles

BSS ∝ sin θi sin θo
BSS ∝ sin θi

-27+10 log (sin θi sin θo )

North Elba

σ = 3 dB
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Seabed Variability Team Approach
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SUPREMO
Multistatic Sonar Performance Model

• Benefits of Multistatics
– Many target aspects - ‘glint’ (mirror reflection)
– Choice of reverb. background - ‘geo-clutter’ (eg ridges)

• Problems of Multistatics
– Interference from other sources
– Simultaneous geometries - complicated
– Possible mismatch of source and receiver

• How to combine ‘extra information’

• Effect of environmental uncertainty
R

ec
2

R
ec

3

Src 1 Src 2

target

Src 1 Src/Rec 2

Rec 3

Phenomena of Interest:
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Environmental Variability
• Determine uncertainty in SE/Area coverage associated with 

uncertainty/variability in
– scat law; spatial variation of scat strength/law, tilted facets; ray angle on slope; 

bottom loss (geoacoustics);...

• Investigate ‘scattering patch’ statistics

Range (x10 km)

R
ec

ei
ve

d
Le

ve
l (

dB
)

Variability of bottom scattering strength 
angular dependence has a large impact 
on Signal Excess, 10 dB @ 10 km.
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Bottom Property Parameter Sensitivity

• Model-data sensitivities are required to construct an 
accurate picture of effect of variability on acoustic 
prediction uncertainty
– Required quantities are the functional or Gateaux 

derivatives

– Other quantities of interest are obtained from the derivative 
chain rule

• Linearize about a global model minimum

∂P
∂κ , ∂P

∂ρ
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• The Frechet derivatives are the sensitivity functions 
for the model and data.

– Large derivatives - data sensitive to model

– Small derivatives - data insensitive to model

• Fast efficient implementation permits:
– Rapid characterization of model/data sensitivities

– Efficient inversions

– First step towards model resolution matrix

Gateaux Derivatives
Goff NJ variability

0 deg

28 deg

45 deg
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Modeling Uncertainty of Prop
through Oceanography  
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Fluctuations of Intensity Averaged 
over IW Realizations
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Sound speed profile

– downward refracting
– slow sediment layer 
– 70 modes @ 1500 Hz

Modeling Uncertainty of Prop/
Reverb over Uncertain Bottom 

• Bottom realization

– 10 m/s rms variability
– lx=500 m
– ly=0.3 m
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Fluctuations of Intensity for 
Perturbations in Slow Bottom
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• Sound speed profile

– downward refracting
– 1728 m/s sand
– 84 modes @ 1600 Hz

Modeling Uncertainty of Prop
over NJ Shelf (Goff model)

• Bottom realization

– 30 m/s rms variability
– lx≈10 km
– ly=5 m
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Fluctuations of Intensity for 
New Jersey Shelf Bottom 1.6 kHz
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Summary

Significant Progress in:
• Developing statistical models of geoacoustic variability on NJ 

shelf

• Developing measures of uncertainty in geoacoustic 
models/measurements/inversions

• Developing tools for modeling impact of geoacoustic 
uncertainty on TL/RL/SE
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Important Findings

No strong correlation yet observed between Vp and 95 kHz 
backscatter 

For propagation uncertainty: 
• geoacoustic variability affects the latest arrivals (Vp/Vw>1)
• geoacoustic variability affects the whole signal (Vp/Vw<1); 
• oceanographic variability always affects the earliest arrivals

Geoacoustic variability, though large, may be consistent from 
region to region certain cases and thus enable extrapolation
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Bathymetric uncertainty – Larry Mayer

Seabed Team interim Products
for dissemination

Please contact us for models/data:

2D realizations of Vp, Vs, αp,αs, ρ NJ shelf & passive margin – L. Pratson

Statistical bathymetry model NJ shelf - J. Goff 0
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Statistical model of near-surface velocity variability NJ shelf – J. Goff

2D realizations of ρ, β, φ,κNJ shelf & passive margin – J. Syvitski/I. Overeem
http://instaar.colorado.edu/deltaforce/projects/dri.html

3D geoacoustic model (lab gen strata) – L. Pratson

Multistatic modeling – Chris Harrison
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Bathymetric uncertainty – L. Mayer

Please contact us for models/data:

2D realizations of Vp, Vs, αp,αs, ρ NJ shelf & passive margin – L. Pratson

Statistical bathymetry model NJ shelf - J. Goff
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Statistical model of near-surface velocity variability NJ shelf – J. Goff

2D realizations of ρ, β, φ,κNJ shelf & passive margin – J. Syvitski/I. Overeem

3D geoacoustic model (lab gen strata) – L. Pratson

Multistatic modeling – C. Harrison

Seabed Team interim Products
for dissemination
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Seabed Variability Team

Name Area of Expertise Affiliation
Brian Calder Bathymetric uncertainty U. New Hampshire

bcalder@cisunix.unh.edu

John Goff Statistical characterization of geoacoustics/morphology UTIG
goff@ig.utexas.edu

Chris Harrison Multi-static modeling SACLANTCEN
harrison@saclantc.nato.int

Charles Holland Acoustic measurements/geoacoustic inversion ARL/Penn State U.
holland-cw@psu.edu

Kevin LePage Reverberation modeling SACLANTCEN
lepage@saclantc.nato.int

Larry Mayer Geoacoustic/morphology measurements U. New Hampshire
larry.mayer@unh.edu

Bob Odom Propagation modeling (forward/inverse) APL/UW
odom@apl.washington.edu

Irina Overeem Predictive geophysical modeling INSTAAR, U. Colorado
Irina.Overeem@Colorado.EDU

Lincoln Pratson Predictive geoacoustic modeling; 3D lab strata Duke U.
lincoln.pratson@duke.edu

James Syvitski Predictive geophysical modeling INSTAAR, U. Colorado
James.Syvitski@Colorado.EDU
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